Chlorella As A Toxin Binder

Photo of Sharol Tilgner

Chlorella Research On Binding Toxins

Click Here For The List Of Other Toxin/Mycotoxin Binders

Chlorella is negatively charged.

I always include research on binders that relates to binding of cholesterol as usually, although not always, the reason cholesterol is lowered is due to binding of bile acids which are attached to cholesterol. All bile acid sequestratants will lower cholesterol. They will also lower many toxins. Therefore, when I see research on cholesterol binding, I like to include it to see how the toxin binder is lowering cholesterol and give me an idea of how it might possibly help with other toxins that bind to bile acids.

Biosci Biotechnol Biochem. 2007 Apr;71(4):916-25. Epub 2007 Apr 7.
Hypocholesterolemic mechanism of Chlorella: Chlorella and its indigestible fraction enhance hepatic cholesterol catabolism through up-regulation of cholesterol 7alpha-hydroxylase in rats.
Shibata S1, Hayakawa K, Egashira Y, Sanada H.

Abstract
Chlorella powder (CP) has a hypocholesterolemic effect and high bile acid-binding capacity; however, its effects on hepatic cholesterol metabolism are still unclear. In the present study, male Wistar rats were divided into four groups and fed a high sucrose + 10% lard diet (H), an H + 10% CP diet (H+CP), an H + 0.5% cholesterol + 0.25% sodium cholate diet (C), or a C + 10% CP diet (C+CP) for 2 weeks. CP decreased serum and liver cholesterol levels significantly in rats fed C-based diets, but did not affect these parameters in rats fed H-based diets. CP increased the hepatic mRNA level and activity of cholesterol 7alpha-hydroxylase (CYP7A1). CP increased hepatic HMG-CoA reductase (HMGR) activity in the rats fed H-based diets, but not in rats fed C-based diets. CP did not affect hepatic mRNA levels of sterol 27-hydroxylase, HMGR, low-density lipoprotein (LDL) receptor, scavenger receptor class B1, ATP-binding cassette (ABC) A1, ABCG5, or ABCB11. Furthermore, the effect of a 3.08% Chlorella indigestible fraction (CIF, corresponding to 10% CP) on hepatic cholesterol metabolism was determined using the same animal models. CIF also decreased serum and liver cholesterol levels significantly in rats fed C-based diets. CIF increased hepatic CYP7A1 mRNA levels. These results suggest that the hypocholesterolemic effect of CP involves enhancement of cholesterol catabolism through up-regulation of hepatic CYP7A1 expression and that CIF contributes to the hypocholesterolemic effect.
PMID: 17420587 [PubMed - indexed for MEDLINE] Free full text

Proc Natl Acad Sci U S A. 2014 Oct 27. pii: 201418895. [Epub ahead of print]
Chlorovirus ATCV-1 is part of the human oropharyngeal virome and is associated with changes in cognitive functions in humans and mice.
Yolken RH1, Jones-Brando L2, Dunigan DD3, Kannan G4, Dickerson F5, Severance E2, Sabunciyan S2, Talbot CC Jr6, Prandovszky E2, Gurnon JR3, Agarkova IV3, Leister F2, Gressitt KL2, Chen O2, Deuber B2, Ma F3, Pletnikov MV4, Van Etten JL7.

Abstract
Chloroviruses (family Phycodnaviridae) are large DNA viruses known to infect certain eukaryotic green algae and have not been previously shown to infect humans or to be part of the human virome. We unexpectedly found sequences homologous to the chlorovirus Acanthocystis turfacea chlorella virus 1 (ATCV-1) in a metagenomic analysis of DNA extracted from human oropharyngeal samples. These samples were obtained by throat swabs of adults without a psychiatric disorder or serious physical illness who were participating in a study that included measures of cognitive functioning. The presence of ATCV-1 DNA was confirmed by quantitative PCR with ATCV-1 DNA being documented in oropharyngeal samples obtained from 40 (43.5%) of 92 individuals. The presence of ATCV-1 DNA was not associated with demographic variables but was associated with a modest but statistically significant decrease in the performance on cognitive assessments of visual processing and visual motor speed. We further explored the effects of ATCV-1 in a mouse model. The inoculation of ATCV-1 into the intestinal tract of 9-11-wk-old mice resulted in a subsequent decrease in performance in several cognitive domains, including ones involving recognition memory and sensory-motor gating. ATCV-1 exposure in mice also resulted in the altered expression of genes within the hippocampus. These genes comprised pathways related to synaptic plasticity, learning, memory formation, and the immune response to viral exposure.
PMID: 25349393 [PubMed - as supplied by publisher]

Mol Plant Pathol. 2005 May 1;6(3):213-24. doi: 10.1111/j.1364-3703.2005.00281.x.
Chlorovirus: a genus of Phycodnaviridae that infects certain chlorella-like green algae.
Kang M1, Dunigan DD, VAN Etten JL.

Abstract
SUMMARY Taxonomy: Chlorella viruses are assigned to the family Phycodnaviridae, genus Chlorovirus, and are divided into three species: Chlorella NC64A viruses, Chlorella Pbi viruses and Hydra viridis Chlorella viruses. Chlorella viruses are large, icosahedral, plaque-forming, dsDNA viruses that infect certain unicellular, chlorella-like green algae. The type member is Paramecium bursaria chlorella virus 1 (PBCV-1). Physical properties: Chlorella virus particles are large (molecular weight approximately 1 x 10(9) Da) and complex. The virion of PBCV-1 contains more than 100 different proteins; the major capsid protein, Vp54, comprises approximately 40% of the virus protein. Cryoelectron microscopy and three-dimensional image reconstruction of PBCV-1 virions indicate that the outer glycoprotein-containing capsid shell is icosahedral and surrounds a lipid bilayered membrane. The diameter of the viral capsid ranges from 1650 A along the two- and three-fold axes to 1900 A along the five-fold axis. The virus contains 5040 copies of Vp54, and the triangulation number is 169. The PBCV-1 genome is a linear, 330 744-bp, non-permuted dsDNA with covalently closed hairpin ends. The PBCV-1 genome contains approximately 375 protein-encoding genes and 11 tRNA genes. About 50% of the protein-encoding genes match proteins in the databases. Hosts: Chlorella NC64A and Chlorella Pbi, the hosts for NC64A viruses and Pbi viruses, respectively, are endosymbionts of the protozoan Paramecium bursaria. However, they can be grown in the laboratory free of both the paramecium and the virus. These two chlorella species are hosts to viruses that have been isolated from fresh water collected around the world. The host for hydra chlorella virus, a symbiotic chlorella from Hydra viridis, has not been grown independently of its host; thus the virus can only be obtained from chlorella cells freshly released from hydra.

 

Remember To Send This To Friends And Family Who Will Benefit From Reading It!

You Are The Healer exists due to the generosity of my readers.

The Crowdfunding I receive through regular patrons allows me to continue this website. “I welcome donations through my company Wise Acres LLC, of any amount in lieu of using ads, and thank you!” Please use the Pay Pal button below.